Indian Institute of Information Technology, Allahabad ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Course Name: Analog Electronics Laboratory

EXPERIMENT NO: 4

Objective:

To design and verify the operation of op-amp as an adder and substractor.

Materials/ Component Required:

S.No	Particulars	Specifications	Quantity
1	Op-amp	μΑ 741	01
2	Resistors	10Kohm	03
3	Multimeter		01
4	DC Power Supply		01
5	CRO + BNC Probes		01+03
6	Connecting Wires		As per use
7	Bread Board		01
8	Power Cords		03

(a) Summing Amplifier (Inverting)

Theory:

Previously in the inverting operational amplifier, the inverting amplifier has a single input voltage, (V_{in}) applied to the inverting input terminal. If we add more input resistors to the input, each equal in value to the original input resistor, (R_{in}) , this end up with another operational amplifier circuit called a Summing Amplifier, "summing inverter" or even a "voltage adder" circuit as shown below.

Circuit Diagram:

Design and Calculations:

From circuit, applying KCL at node 2 along with virtual ground concept at terminal 2 and 3,

$$I_1 + I_2 = I_f \equiv \frac{V_1}{R_1} + \frac{V_2}{R_2} = -\frac{V_{out}}{R_f}$$

 $V_{out} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2}\right)$ This is weighted summing amplifer If R₁=R₂ then, $V_{out} = -\frac{R_f}{R_1}(V_1 + V_2)$ Summing Amplifier If R_f=R₁ then, $V_{out} = -(V_1 + V_2)$ Inverting voltage adder/summing circuit

(b) Difference Amplifier

Theory:

In the previous circuits, only one terminal, inverting or non-inverting, were used as input. If both terminals connected to 2 different signals then the output will provide the difference of the two signals hence known as difference amplifier.

Design and Calculations:

From Circuit $I_1 = \frac{V_1 - V_a}{R_1}$, $I_2 = \frac{V_2 - V_b}{R_2}$, $I_f = \frac{V_a - V_{out}}{R_f}$ Using virtual ground concept: $V_a = V_b$

Through voltage divider rule at non-inverting terminal: $V_b = V_2 \left(\frac{R_3}{R_2 + R_3}\right)$

Now, applying Superposition theorem:

If V₂=0, then:
$$V_{out(a)} = -V_1 \frac{R_f}{R_1}$$

If V₁=0, then: $V_{out(b)} = V_2 \left(\frac{R_3}{R_2 + R_3}\right) \left(\frac{R_1 + R_f}{R_1}\right)$

 $V_{out} = V_2 \left(\frac{R_3}{R_2 + R_3}\right) \left(\frac{R_1 + R_f}{R_1}\right) - V_1 \frac{R_f}{R_1}, \text{ Weighted Difference Amplifier}$ If R₁=R₂ and R₃=R_f, then: $V_{out} = \frac{R_3}{R_1} (V_2 - V_1), \text{ Difference Amplifier}$ If all resistances are equal then: $V_{out} = (V_2 - V_1)$ Substractor

Observation Table:

S.No	V _{ref} (Volts)	V _i (Volts)	V _o (Volts)
1			
2			
3			
4			

Report:

Result:

The summing and difference amplifier circuits has been implemented and operation verified accordingly.

Precautions:

- a) Connections should be verified before switching on the supply.
- b) The resistance to be chosen should be in proper range and of calculated values.

References:

- 1. https://www.electronics-tutorials.ws/opamp/opamp_4.html
- 2. https://www.electronics-tutorials.ws/opamp/opamp_5.html
- 3. R.A. Gayakward, "Op-Amps and Linear Integrated Circuits" 4th Ed. Pearson-Prentice Hall

 \rightarrow