Indian Institute of Information Technology, Allahabad

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Course Name: Fundamental of Electrical and Electronics

EXPERIMENT NO: 3

Objectives:

- a. To plot Volt-Ampere Characteristics of Silicon P-N Junction Diode.
- b. To find cut-in Voltage for Silicon P-N Junction diode.
- $c. \ To \ find \ static \ and \ dynamic \ resistances \ in \ both \ forward \ and \ reverse \ biased \ conditions \ for \ Si$

P-N Junction diode.

Materials / Component Required:

Diode IN4007 (Si)- 1, Resistor (1K, 10K) -1,1

Equipment:

Breadboard, Regulated Power supply (0-30 V DC), Digital Ammeter (0-200 μ A/20 mA), Digital voltmeter (0-2V/20V DC), connecting Wires.

Theory:

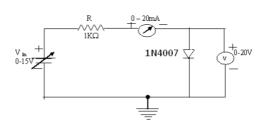
The volt-ampere characteristics of a diode explained by following equation:

$$I=I_0(e^{v/(\eta v_T)}-1)$$

Where,

I=current flowing in the diode , I₀ = reverse saturation current

V=voltage applied to the diode


VT=volt-equivalent of temperature=kT/q=T/11,600=26mV (@ room temp).

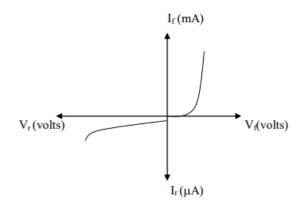
 $\eta=1$ (for Ge) and 2 (for Si)

Circuit Diagram:

Forward Biased condition

Reverse Biased condition

Observations


Si diode in forward biased conditions:

Si diode in reverse biased conditions:

Sl. No	RPS Voltage	Reverse Voltage across the diode V _r (volts)	Reverse current through the diode I _r (µA)

Calculations and Graph:

Static forward Resistance R_{dc} = $V_f / I_f \Omega \Delta$

Dynamic forward Resistance r ac = $\Delta V_f/\Delta I_f \Omega$

Static Reverse Resistance R dc =V r / I r Ω

Dynamic Reverse Resistance $r_{ac} = \Delta V r / \Delta I r \Omega$

Result:

- 1. Cut in voltage = V
- 2. Static forward resistance = Ω
- 3. Dynamic forward resistance =..... Ω

Precautions:

- 1. While doing the experiment do not exceed the ratings of the diode. This may lead to damage the diode.
- 2. Connect voltmeter and Ammeter in correct polarities as shown in the circuit diagram.
- 3. Do not switch ON the power supply unless you have checked the circuit connections as per the circuit diagram.