INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

COURSE NAME: EWCN LABORATORY

Experiment 3.1: Consider a system where a source node S communicates with a destination node D with the help of a relay R employing amplify-and-forward protocol over a wireless channel. For the given system, assuming nodes with single antenna and half-duplex operation, under Rayleigh fading, plot the outage versus signal-to-noise ratio (SNR) performance. Also, with path loss modeling, plot outage versus relay location plot.

Objective: To simulate a basic cooperative wireless communication network scenario with AF relay in MATLAB and to evaluate its outage performance.

Materials/ Component Required: MATLAB Software

Procedure: Follow the below mentioned steps:

- 1) Generate an exponentially distributed random variables of a given mean value.
- 2) Obtain the Instantaneous SNRs.
- 3) Check if $C_D < R$, then counter $c \to c+1$.
- 4) Repeat Steps 1, 2, and 3 for a given number of trails for a ρ .
- 5) For a given ρ , after finishing up with the trials we have $P_{out} = \frac{c}{\text{number of trials}}$
- 6) Repeat the above steps 1-5 to obtain the outage values for different ρ .

Results: Plot the system outage versus signal-to-noise ratio (SNR) performance.

Experiment 3.2: Consider a system where a source node S communicates with a destination node D with the help of a relay R employing amplify-and-forward (AF) protocol over a wireless channel. For the given system, assuming nodes with single antenna and half-duplex operation, under Rayleigh fading, plot the capacity versus signal-to-noise ratio (SNR) performance. Also, with path loss modeling, plot capacity versus relay location plot.

Objective: To simulate a basic cooperative wireless communication network scenario with AF relay in MATLAB and to evaluate its capacity performance.

Materials/ Component Required: MATLAB Software

Procedure: Follow the below mentioned steps:

- 1) Generate an exponentially distributed random variables of a given mean value.
- 2) Obtain the Instantaneous SNRs.
- 3) Do $k = C_{SD} + k$.
- 4) Repeat Steps 1, 2, and 3 for a given number of trails for a ρ .
- 5) For a given ρ , after finishing up with the trials we have Capacity = $\frac{k}{\text{number of trials}}$

6) Repeat the above steps 1-5 to obtain the capacity values for different ρ .

Results: Plot the system capacity versus signal-to-noise ratio (SNR) performance.